Copied to
clipboard

G = C22×C17⋊C4order 272 = 24·17

Direct product of C22 and C17⋊C4

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×C17⋊C4, D343C4, D17.C23, D34.7C22, C34⋊(C2×C4), D17⋊(C2×C4), C17⋊(C22×C4), (C2×C34)⋊2C4, (C22×D17).3C2, SmallGroup(272,52)

Series: Derived Chief Lower central Upper central

C1C17 — C22×C17⋊C4
C1C17D17C17⋊C4C2×C17⋊C4 — C22×C17⋊C4
C17 — C22×C17⋊C4
C1C22

Generators and relations for C22×C17⋊C4
 G = < a,b,c,d | a2=b2=c17=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

Subgroups: 406 in 54 conjugacy classes, 32 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C23, C22×C4, C17, D17, D17, C34, C17⋊C4, D34, C2×C34, C2×C17⋊C4, C22×D17, C22×C17⋊C4
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C17⋊C4, C2×C17⋊C4, C22×C17⋊C4

Smallest permutation representation of C22×C17⋊C4
On 68 points
Generators in S68
(1 52)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 61)(11 62)(12 63)(13 64)(14 65)(15 66)(16 67)(17 68)(18 35)(19 36)(20 37)(21 38)(22 39)(23 40)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 49)(33 50)(34 51)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(35 52)(36 53)(37 54)(38 55)(39 56)(40 57)(41 58)(42 59)(43 60)(44 61)(45 62)(46 63)(47 64)(48 65)(49 66)(50 67)(51 68)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 18)(2 31 17 22)(3 27 16 26)(4 23 15 30)(5 19 14 34)(6 32 13 21)(7 28 12 25)(8 24 11 29)(9 20 10 33)(35 52)(36 65 51 56)(37 61 50 60)(38 57 49 64)(39 53 48 68)(40 66 47 55)(41 62 46 59)(42 58 45 63)(43 54 44 67)

G:=sub<Sym(68)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,61)(11,62)(12,63)(13,64)(14,65)(15,66)(16,67)(17,68)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,18)(2,31,17,22)(3,27,16,26)(4,23,15,30)(5,19,14,34)(6,32,13,21)(7,28,12,25)(8,24,11,29)(9,20,10,33)(35,52)(36,65,51,56)(37,61,50,60)(38,57,49,64)(39,53,48,68)(40,66,47,55)(41,62,46,59)(42,58,45,63)(43,54,44,67)>;

G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,61)(11,62)(12,63)(13,64)(14,65)(15,66)(16,67)(17,68)(18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,18)(2,31,17,22)(3,27,16,26)(4,23,15,30)(5,19,14,34)(6,32,13,21)(7,28,12,25)(8,24,11,29)(9,20,10,33)(35,52)(36,65,51,56)(37,61,50,60)(38,57,49,64)(39,53,48,68)(40,66,47,55)(41,62,46,59)(42,58,45,63)(43,54,44,67) );

G=PermutationGroup([[(1,52),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,61),(11,62),(12,63),(13,64),(14,65),(15,66),(16,67),(17,68),(18,35),(19,36),(20,37),(21,38),(22,39),(23,40),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,49),(33,50),(34,51)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(35,52),(36,53),(37,54),(38,55),(39,56),(40,57),(41,58),(42,59),(43,60),(44,61),(45,62),(46,63),(47,64),(48,65),(49,66),(50,67),(51,68)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,18),(2,31,17,22),(3,27,16,26),(4,23,15,30),(5,19,14,34),(6,32,13,21),(7,28,12,25),(8,24,11,29),(9,20,10,33),(35,52),(36,65,51,56),(37,61,50,60),(38,57,49,64),(39,53,48,68),(40,66,47,55),(41,62,46,59),(42,58,45,63),(43,54,44,67)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H17A17B17C17D34A···34L
order122222224···41717171734···34
size11111717171717···1744444···4

32 irreducible representations

dim1111144
type+++++
imageC1C2C2C4C4C17⋊C4C2×C17⋊C4
kernelC22×C17⋊C4C2×C17⋊C4C22×D17D34C2×C34C22C2
# reps16162412

Matrix representation of C22×C17⋊C4 in GL6(𝔽137)

13600000
01360000
001000
000100
000010
000001
,
100000
01360000
001000
000100
000010
000001
,
100000
010000
003610164136
003710164136
003610264136
003610165136
,
10000000
0370000
000001
00413411213
007761213
0010136731

G:=sub<GL(6,GF(137))| [136,0,0,0,0,0,0,136,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,136,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,37,36,36,0,0,101,101,102,101,0,0,64,64,64,65,0,0,136,136,136,136],[100,0,0,0,0,0,0,37,0,0,0,0,0,0,0,4,77,101,0,0,0,134,61,36,0,0,0,112,2,73,0,0,1,13,13,1] >;

C22×C17⋊C4 in GAP, Magma, Sage, TeX

C_2^2\times C_{17}\rtimes C_4
% in TeX

G:=Group("C2^2xC17:C4");
// GroupNames label

G:=SmallGroup(272,52);
// by ID

G=gap.SmallGroup(272,52);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,40,5204,819]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^17=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

׿
×
𝔽